DEM analysis of the effect of electrostatic interaction on particle mixing for carrier-based dry powder inhaler formulations_中国颗粒学会

在线阅读

Volurnes 72-75 (2023)

Volurnes 60-71 (2022)

Volurnes 54-59 (2021)

Volurnes 48-53 (2020)

Volurnes 42-47 (2019)

Volurnes 36-41 (2018)

Volurnes 30-35 (2017)

Volurnes 24-29 (2016)

Volurnes 18-23 (2015)

Volurnes 12-17 (2014)

Volurne 11 (2013)

Volurne 10 (2012)

Volurne 9 (2011)

Volurne 8 (2010)

Volurne 7 (2009)

Volurne 6 (2008)

Volurne 5 (2007)

Volurne 4 (2006)

Volurne 3 (2005)

Volurne 2 (2004)

Volurne 1 (2003)

在线阅读

Partic. vol. 23 pp. 25-30 (December 2015)
doi: 10.1016/j.partic.2014.12.007

DEM analysis of the effect of electrostatic interaction on particle mixing for carrier-based dry powder inhaler formulations

Jiecheng Yanga, b, *, Chuan-Yu Wub, Michael Adamsa

Show more

jxy147@bham.ac.uk

Highlights

    • Effect of electrostatic force on particle mixing in a vibrating container was examined using DEM. • The contact number increased with increasing charge and with decreasing vibration strength. • Influences of electrostatic and van der Waals forces on particle mixing were compared.

Abstract

Particle interactions play a significant role in controlling the performance of dry powder inhalers (DPIs), which mainly arise through van der Waals potentials, electrostatic interactions, and capillary forces. Our aim is to investigate the influence of electrostatic charge on the performance of DPIs as a basis for improving the formulation of the particle ingredients. The mixing process of carrier and active pharmaceutical ingredient (API) particles in a vibrating container is investigated using a discrete element method (DEM). The number of API particles attaching to the carrier particle (i.e., contact number) increases with increasing charge and decreases with increasing container size. The contact number decreases with increasing vibrational velocity amplitude and frequency. Moreover, a mechanism governed by the electrostatic force is proposed for the mixing process. This mechanism is different from that previously proposed for the mixing process governed by van der Waals forces, indicating that long-range and short-range adhesive forces can result in different mixing behaviours.

Graphical abstract

Keywords

Electrostatic; Particle mixing; Dry powder inhaler; Discrete element method