Simulation of dynamic fluid–solid interactions with an improved direct-forcing immersed boundary method_中国颗粒学会

在线阅读

Volurnes 72-75 (2023)

Volurnes 60-71 (2022)

Volurnes 54-59 (2021)

Volurnes 48-53 (2020)

Volurnes 42-47 (2019)

Volurnes 36-41 (2018)

Volurnes 30-35 (2017)

Volurnes 24-29 (2016)

Volurnes 18-23 (2015)

Volurnes 12-17 (2014)

Volurne 11 (2013)

Volurne 10 (2012)

Volurne 9 (2011)

Volurne 8 (2010)

Volurne 7 (2009)

Volurne 6 (2008)

Volurne 5 (2007)

Volurne 4 (2006)

Volurne 3 (2005)

Volurne 2 (2004)

Volurne 1 (2003)

在线阅读

Partic. vol. 18 pp. 22-34 (February 2015)
doi: 10.1016/j.partic.2014.05.004

Simulation of dynamic fluid–solid interactions with an improved direct-forcing immersed boundary method

Shengbin Dia, b, Wei Gea,*

Show more

wge@ipe.ac.cn

Highlights

    • A modified direct-forcing immersed boundary method was proposed. • The improved method was implemented on a CPU–GPU hybrid supercomputer. • The method was validated by different test problems. • Simulation yielded accurate results in boundary vicinity, especially for moving boundaries.

Abstract

Dynamic fluid–solid interactions are widely found in chemical engineering, such as in particle-laden flows, which usually contain complex moving boundaries. The immersed boundary method (IBM) is a convenient approach to handle fluid–solid interactions with complex geometries. In this work, Uhlmann's direct-forcing IBM is improved and implemented on a supercomputer with CPU–GPU hybrid architecture. The direct-forcing IBM is modified as follows: the Poisson's equation for pressure is solved before evaluation of the body force, and the force is only distributed to the Cartesian grids inside the immersed boundary. A multidirect forcing scheme is used to evaluate the body force. These modifications result in a divergence-free flow field in the fluid domain and the no-slip boundary condition at the immersed boundary simultaneously. This method is implemented in an explicit finite-difference fractional-step scheme, and validated by 2D simulations of lid-driven cavity flow, Couette flow between two concentric cylinders and flow over a circular cylinder. Finally, the method is used to simulate the sedimentation of two circular particles in a channel. The results agree very well with previous experimental and numerical data, and are more accurate than the conventional direct-forcing method, especially in the vicinity of a moving boundary.

Graphical abstract

Keywords

Immersed boundary method; Fluid–solid interactions; No-slip condition; Divergence-free condition; CPU–GPU hybrid architecture