Formation of biomimetic hierarchical nanostructure in homopolymers and block copolymer ternary blend particles_中国颗粒学会

在线阅读

Volurnes 72-75 (2023)

Volurnes 60-71 (2022)

Volurnes 54-59 (2021)

Volurnes 48-53 (2020)

Volurnes 42-47 (2019)

Volurnes 36-41 (2018)

Volurnes 30-35 (2017)

Volurnes 24-29 (2016)

Volurnes 18-23 (2015)

Volurnes 12-17 (2014)

Volurne 11 (2013)

Volurne 10 (2012)

Volurne 9 (2011)

Volurne 8 (2010)

Volurne 7 (2009)

Volurne 6 (2008)

Volurne 5 (2007)

Volurne 4 (2006)

Volurne 3 (2005)

Volurne 2 (2004)

Volurne 1 (2003)

在线阅读

Partic. vol. 64 pp. 98-109 (May 2022)
doi: 10.1016/j.partic.2021.09.002

Formation of biomimetic hierarchical nanostructure in homopolymers and block copolymer ternary blend particles

Shu Kikuchia, Ryoka Shojia, Shinji Kanehashia,b, Guanghui Maa,b,c, Kenji Oginoa,b,*

Show more

kogino@cc.tuat.ac.jp

Highlights

    • Polymer blend particles with hierarchical nanostructure were fabricated. • Addition of block copolymer to homopolymer blends changed the morphology. • Resulting morphologies were dependent on the molecular weight of each segment.

Abstract

In order to mimic hierarchical nanostructures in nature, particles of polymer blends consisting of poly(4-butyltriphenylamine) (PBTPA), poly(methyl methacrylate) (PMMA) and PBTPA-block-PMMA were fabricated by a solvent evaporation method. Effects of the molecular weight and the chemical composition of PBTPA-b-PMMA, molecular weights of homopolymers, and the composition of the blend on the morphology were investigated. The polymer blend particle consisting of PBTPA and PMMA homopolymers exhibited thermodynamically favored core-shell structure, in which more hydrophilic PMMA-shell surrounded PBTPA-core. The addition of 10 wt% of PBTPA-b-PMMA caused the morphological transition from core-shell to Janus or inversed core-shell, in which PBTPA-shell surrounded PMMA-core, depending on the molecular weight of PBTPA segment in PBTPA-b-PMMA. When the molecular weight of PMMA segment was higher than that of PMMA homopolymer, watermelon-like particles in which small PBTPA domain less than 80 nm dispersed in the PMMA domain surrounded by PBTPA shell were observed. As the ratio of PBTPA-b-PMMA increased, the interface of the macrophase separation became obscure. At 50 wt% of the PBTPA-b-PMMA, only microphase separation was observed. The measurement of interfacial tension by pendant drop method demonstrated that PBTPA-b-PMMA lower the interfacial tension between PBTPA and the aqueous phase to the value similar to that of PMMA with the aqueous phase.

Graphical abstract

Keywords

Microsphere; Hierarchical structure; Polymer blend; Block copolymer; Solvent evaporation; Phase separation